Customer Targeting & Segmentation

Loading...

With the new year just days behind us, and as the uptick in holiday spending comes back down, debt consolidation will take precedence along with the making (and breaking) of new year’s resolutions. Personal loans were the fastest growing unsecured lending product for much of last year. From debt consolidation to major purchases, consumers are increasingly choosing these flexible, easy-access loans over credit cards throughout the course of the year. Recent Experian research highlighted the trends around this fast-paced lending product: Previously, while industry experts had predicted a leveling off of personal loans originations, Experian data shows steady growth. Additionally, there were 35.7 million personal loan trades in the second quarter, the highest number to date since Q1 of 2007. What is driving this growth? Observations suggest growth trends across the industry as a whole – not just in the personal loans segment. And the numbers prove it. Growth is occurring across the board. Experian statistics show: Consumer confidence is up 5.6% year over year Investor confidence remains high – up 18% year over year since 1987 Unemployment remains low and continued decrease is forecasted in the near future With increased confidence and increased spending often comes increased personal loans. More financial institutions are bringing personal loans under their roofs. As many consumers enter each new year as part of a “debt consolidation nation” per se, focus for many will be on personal loans as they seek to consolidate revolving debt. Since this is a known trend, lenders across the board – from traditional financial institutions to fintechs – need to be strategic with their marketing efforts in order to reach the right consumers with the right products at the right time. Consumers consider important factors in choosing the lender(s) for their personal loans including interest rate and the ability to apply online among others. These factors see differences across generations as well. These factors and others should influence lenders’ marketing strategies, on top of their best practices. Experian partnered with Mintel Group for their insights on the 2019 trends and best practices for digital credit marketing. Register for our upcoming webinar to learn more about Digital Credit Marketing 2019 Trends and Best Practices. Register for the Webinar

Published: January 3, 2019 by Stefani Wendel

“We don’t know what we don’t know.” It’s a truth that seems to be on the minds of just about every financial institution these days. The market, not-to-mention the customer base, seems to be evolving more quickly now than ever before. Mergers, acquisitions and partnerships, along with new competitors entering the space, are a daily headline. Customers expect the same seamless user experience and instant gratification they’ve come to expect from companies like Amazon in just about every interaction they have, including with their financial institutions. Broadly, financial institutions have been slow to respond both in the products they offer their customers and prospects, and in how they present those products. Not surprisingly, only 26% of customers feel like their financial institutions understand and appreciate their needs. So, it’s not hard to see why there might be uncertainty as to how a financial institution should respond or what they should do next. But what if you could know what you don’t know about your customer and industry data? Sound too good to be true? It’s not—it’s exactly what Experian’s Ascend Analytical Sandbox was built to do. “At OneMain we’ve used Sandbox for a lot of exploratory analysis and feature development,” said Ryland Ely, a modeler at Experian partner client, OneMain Financial and a Sandbox user. For example, “we’ve used a loan amount model built on Sandbox data to try and flag applications where we might be comfortable with the assigned risk grade but we’re concerned we might be extending too much or too little credit,” he said. The first product built on Experian’s big data platform, Ascend, the Analytical Sandbox is an analytics environment that can have enterprise-wide impact. It provides users instant access to near real-time customer data, actionable analytics and intelligence tools, along with a network of industry and support experts to drive the most value out of their data and analytics. Developed with scalability, flexibility, efficiency and security at top-of-mind, the Sandbox is a hybrid-cloud system that leverages the high availability and security of Amazon Web Services. This eliminates the need, time and infrastructure costs associated with creating an internally hosted environment. Additionally, our web-based interface speeds access to data and tools in your dedicated Sandbox all behind the protection of Experian’s firewall. In addition to being supported by a revolutionized tech stack backed by an $825 million annual investment, Sandbox enables use of industry-leading business intelligence tools like SAS, RStudio, H2O, Python, Hue and Tableau. Where the Ascend Sandbox really shines is in the amount and quality of the data that’s put into it. As the largest, global information services provider, the Sandbox brings the full power of Experian’s 17+ years of full-file historical tradeline data, boasting a data accuracy rate of 99.9%. The Sandbox also allows users the option to incorporate additional data sets including commercial small business data and soon real estate data, among others. Alternative data assets add to the 50 million consumers who use some sort of financial service, in addition to rental and utility payments. In addition to including Experian’s data on the 220+ million credit-active consumers, small business and other data sets, the Sandbox also allows companies to integrate their own customer data into the system. All data is depersonalized and pinned to allow companies to fully leverage the value of Experian’s patented attributes and scores and models. Ascend Sandbox allows companies to mine the data for business intelligence to define strategy and translate those findings into data visualizations to communicate and win buy-in throughout their organization. But here is where customers are really identifying the value in this big data solution, taking those business intelligence insights and being able to take the resulting models and strategies from the Sandbox directly into a production environment. After all, amassing data is worthless unless you’re able to use it. That’s why 15 of the top financial institutions globally are using the Experian Ascend Sandbox for more than just benchmarking and data visualization but also risk modeling, score migration, share of wallet, market entry, cross-sell and much more. Moreover, clients are seeing time-savings, deeper insights and reduced compliance concerns as a result of consolidating their production data and development platform inside Sandbox. “Sandbox is often presented as a tool for visualization or reporting, sort of creating summary statistics of what’s going on in the market. But as a modeler, my perspective is that it has application beyond just those things,” said Ely. To learn more about the Experian Ascend Analytical Sandbox and hear more about how OneMain Financial is getting value out of the Sandbox, watch this on-demand webinar.

Published: December 11, 2018 by Jesse Hoggard

Your model is only as good as your data, right? Actually, there are many considerations in developing a sound model, one of which is data. Yet if your data is bad or dirty or doesn’t represent the full population, can it be used? This is where sampling can help. When done right, sampling can lower your cost to obtain data needed for model development. When done well, sampling can turn a tainted and underrepresented data set into a sound and viable model development sample. First, define the population to which the model will be applied once it’s finalized and implemented. Determine what data is available and what population segments must be represented within the sampled data. The more variability in internal factors — such as changes in marketing campaigns, risk strategies and product launches — and external factors — such as economic conditions or competitor presence in the marketplace — the larger the sample size needed. A model developer often will need to sample over time to incorporate seasonal fluctuations in the development sample. The most robust samples are pulled from data that best represents the full population to which the model will be applied. It’s important to ensure your data sample includes customers or prospects declined by the prior model and strategy, as well as approved but nonactivated accounts. This ensures full representation of the population to which your model will be applied. Also, consider the number of predictors or independent variables that will be evaluated during model development, and increase your sample size accordingly. When it comes to spotting dirty or unacceptable data, the golden rule is know your data and know your target population. Spend time evaluating your intended population and group profiles across several important business metrics. Don’t underestimate the time needed to complete a thorough evaluation. Next, select the data from the population to aptly represent the population within the sampled data. Determine the best sampling methodology that will support the model development and business objectives. Sampling generates a smaller data set for use in model development, allowing the developer to build models more quickly. Reducing the data set’s size decreases the time needed for model computation and saves storage space without losing predictive performance. Once the data is selected, weights are applied so that each record appropriately represents the full population to which the model will be applied. Several traditional techniques can be used to sample data: Simple random sampling — Each record is chosen by chance, and each record in the population has an equal chance of being selected. Random sampling with replacement — Each record chosen by chance is included in the subsequent selection. Random sampling without replacement — Each record chosen by chance is removed from subsequent selections. Cluster sampling — Records from the population are sampled in groups, such as region, over different time periods. Stratified random sampling — This technique allows you to sample different segments of the population at different proportions. In some situations, stratified random sampling is helpful in selecting segments of the population that aren’t as prevalent as other segments but are equally vital within the model development sample. Learn more about how Experian Decision Analytics can help you with your custom model development needs.

Published: November 7, 2018 by Guest Contributor

Every morning, I wake up and walk bleary eyed to the bathroom, pop in my contacts and start my usual routine. Did I always have contacts? No. But putting on my contacts and seeing clearly has become part of my routine. After getting used to contacts, wearing glasses pales in comparison. This is how I view alternative credit data in lending. Are you having qualms about using this new data set? I get it, it’s like sticking a contact into your eye for the first time: painful and frustrating because you’re not sure what to do. To relieve you of the guesswork, we’ve compiled the top four myths related to this new data set to provide an in-depth view as to why this data is an essential supplement to your traditional credit file. Myth 1: Alternative credit data is not relevant. As consumers are shifting to new ways of gaining credit, it’s important for the industry to keep up. These data types are being captured by specialty credit bureaus. Gone are the days when alternative financing only included the payday store on the street corner. Alternative financing now expands to loans such as online installment, rent-to-own, point-of-sale financing, and auto-title loans. Consumers automatically default to the financing source familiar to them – which doesn’t necessarily mean traditional financial institutions. For example, some consumers may not walk into a bank branch anymore to get a loan, instead they may search online for the best rates, find a completely digital experience and get approved without ever leaving their couches. Alternative credit data gives you a lens into this activity. Myth 2: Borrowers with little to no traditional credit history are high risk. A common misconception of a thin-file borrower is that they may be high risk. According to the CFPB, roughly 45 million Americans have little to no credit history and this group may contain minority consumers or those from low income neighborhoods. However, they also may contain recent immigrants or young consumers who haven’t had exposure to traditional credit products. According to recent findings, one in five U.S. consumers has an alternative financial services data hit– some of these are even in the exceptional or very good credit segments. Myth 3: Alternative credit data is inaccurate and has poor data quality. On the contrary, this data set is collected, aggregated and verified in the same way as traditional credit data. Some sources of data, such as rental payments, are monthly and create a consistent look at a consumer’s financial behaviors. Experian’s Clarity Services, the leading source of alternative finance data, reports their consumer information, which includes application information and bank account data, as 99.9% accurate. Myth 4: Using alternative credit data might be harmful to the consumer. This data enables a more complete view of a consumer’s credit behavior for lenders, and provides consumers the opportunity to establish and maintain a credit profile. As with all information, consumers will be assessed appropriately based on what the data shows about their credit worthiness. Alternative credit data provides a better risk lens to the lender and consumers may get more access and approval for products that they want and deserve. In fact, a recent Experian survey found 71% of lenders believe alternative credit data will help consumers who would have previously been declined. Like putting in a new pair of contact lenses the first time, it may be uncomfortable to figure out the best use for alternative credit data in your daily rhythm. But once it’s added, it’s undeniable the difference it makes in your day-to-day decisions and suddenly you wonder how you’ve survived without it so long. See your consumers clearly today with alternative credit data. Learn More About Alternative Credit Data

Published: November 6, 2018 by Guest Contributor

There are four reasons why the auto industry should be enthusiastic about the electric vehicle segment’s future.

Published: November 2, 2018 by Brad Smith

Picking up where we left off, online fintech lenders face the same challenges as other financial institutions; however, they continue to push the speed of evolution and are early adopters across the board. Here’s a continuation of my conversation with Gavin Harding, Senior Business Consultant at Experian. (Be sure to read part 1.) Part two of a two-part series: As with many new innovations, fintechs are early adopters of alternative data. How are these firms using alt data and what are the results that are being achieved? In a competitive market, alternative data can be the key to helping fintechs lend deeper and better reach underserved consumers. By augmenting traditional credit data, a lender has access to greater insights on how a thin-file consumer will perform over time, and can then make a credit decision based on the identified risk. This is an important point. While alternative data often helps lenders expand their universe, it can also provide quantitative risk measures that traditional data doesn’t necessarily provide. For example, alternative data can recognize that a consumer who changes residences more than once every two years presents a higher credit risk. Another way fintechs are using alternative data is to screen for fraud. Fraudsters are digitally savvy and are using technology to initiate fraud attacks on a broader array of lenders, in bigger volumes than ever before. If I am a consumer who wants to get a loan through an online fintech lender, the first thing the lender wants to know is that I am who I say I am. The lender will ask me a series of questions and use traditional data to validate. Alternative data takes authentication a step further and allows lenders to not only identify what device I am using to complete the application, but whether the device is connected to my personal account records – giving them greater confidence in validating my identity. A second example of using alternative data to screen for fraud has to do with the way an application is actually completed. Most individuals who complete an online application will do so in a logical, sequential order. Fraudsters fall outside of these norms – and identifying these patterns can help lenders increase fraud detection. Lastly, alternative data can help fintech lenders with servicing and collections by way of utilizing behavioral analytics. If a consumer has a history of making payments on time, a lender may be apt to approve more credit, at better terms. As the consumer begins to pay back the credit advance, the lender can see the internal re-payment history and recommend incremental line increases. From your perspective, what is the future of data and what should fintechs consider as they evolve their products? The most sophisticated, most successful “think tanks” have two things that are evolving rapidly together: Data: Fintechs want all possible data, from a quality source, as close to real-time as possible. The industry has moved from “data sets” to “data lakes” to “data oceans,” and now to “data universes.” Analytics: Fintechs are creating ever-more sophisticated analytics and are incorporating machine learning and artificial intelligence into their strategies. Fintechs will continue to look for data assets that will help them reach the consumer. And to the degree that there is a return on the data investment, they will continue to capitalize on innovative solutions – such as alternative data.   In the competitive financial marketplace, insight is everything. Aite Group recently conducted a new report about alternative data that dives into new qualitative research collected by the firm. Join us to hear Aite Group’s findings about fintechs, banks, and credit unions at their webinar on December 4. Register today! Register for the Webinar Click here for more information about Experian’s Alternative Data solutions. Don’t forget to check out part one of this series here.   About Gavin Harding With more than 20 years in banking and finance Gavin leverages his expertise to develop sophisticated data and analytical solutions to problem solve and define strategies across the customer lifecycle for banking and fintech clients. For more than half of his career Gavin held senior leadership positions with a large regional bank, gaining experience in commercial and small business strategy, SBA lending, credit and risk management and sales. Gavin has guided organizations through strategic change initiatives and regulatory and supervisory oversight issues. Previously Gavin worked in the business leasing, agricultural and construction equipment sectors in sales and credit management roles.

Published: November 1, 2018 by Brittany Peterson

Where are electric vehicles most popular? During the first half of the year, 3.6 percent of all new registrations in California were EVs.

Published: October 31, 2018 by Brad Smith

While electric vehicles remain a relatively niche part of the market, with only 0.9 percent of the total vehicle registrations through June 2018, consumer demand has grown quite significantly over the past few years. As I mentioned in a previous blog post, electric vehicles held just 0.5 percent in 2016. Undoubtedly, manufacturers and retailers will look to capitalize on this growing segment of the population. But, it’s not enough to just dig into the sales number. If the automotive industry really wants to position itself for success, it’s important to understand the consumers most interested in electric vehicles. This level of data can help manufacturers and retailers make the right decisions and improve the bottom line. Based on our vehicle registration data, below is detailed look into the electric vehicle consumer. Home Value Somewhat unsurprisingly, the people most likely to purchase an electric vehicle tend to own more expensive homes. Consumers with homes valued between $450,000-$749,000 made up 25 percent of electric vehicle market share. And, as home values increase, these consumers still make up a significant portion of electric vehicle market. More than 15 percent of the electric vehicle market share was made up by those with homes valued between $750,000-$999,000, and 22.5 percent of the share was made up by those with home values of more than $1 million. In fact, consumers with home values of more than $1 million are 5.9 times more likely to purchase an electric vehicle than the general population.  Education Level Breaking down consumers by education level shows another distinct pattern. Individuals with a graduate degree are two times more likely to own an electric vehicle. Those with graduate degrees made up 28 percent of electric vehicle market share, compared to those with no college education, which made up just 11 percent. Consumer Lifestyle Segmentation Diving deeper into the lifestyles of individuals, we leveraged our Mosaic® USA consumer lifestyle segmentation system, which classifies every household and neighborhood in the U.S. into 71 unique types and 19 overachieving groups. Findings show American Royalty, who are described as wealthy, influential couples and families living in prestigious suburbs, led the way with a 17.8 percent share. Following them were Silver Sophisticates at 11.9 percent. Those in this category are described as mature couples and singles living an upscale lifestyle in suburban homes. Rounding out the top three were Cosmopolitan Achiever, described as affluent middle-aged and established couples and families who enjoy a dynamic lifestyle in metro areas. Their share was 10.1 percent. If manufacturers and retailers go beyond just the sales figures, a clearer picture of the electric vehicle market begins to form. They have an opportunity to understand that wealthier, more established individuals with higher levels of education and home values are much more likely to purchase electric vehicles. While these characteristics are consistent, the different segments represent a dynamic group of people who share similarities, but are still at different stages in life, leading different lifestyles and have different needs. As time wears on, the electric vehicle segment is poised for growth. If the industry wants to maximize its potential, they need to leverage data and insights to help make the right decisions and adapt to the evolving marketplace.

Published: October 26, 2018 by Brad Smith

I believe it was George Bernard Shaw that once said something along the lines of, “If economists were laid end-to-end, they’d never come to a conclusion, at least not the same conclusion.” It often feels the same way when it comes to big data analytics around customer behavior. As you look at new tools to put your customer insights to work for your enterprise, you likely have questions coming from across your organization. Models always seem to take forever to develop, how sure are we that the results are still accurate? What data did we use in this analysis; do we need to worry about compliance or security? To answer these questions and in an effort to best utilize customer data, the most forward-thinking financial institutions are turning to analytical environments, or sandboxes, to solve their big data problems. But what functionality is right for your financial institution? In your search for a sandbox solution to solve the business problem of big data, make sure you keep these top four features in mind. Efficiency: Building an internal data archive with effective business intelligence tools is expensive, time-consuming and resource-intensive. That’s why investing in a sandbox makes the most sense when it comes to drawing the value out of your customer data.By providing immediate access to the data environment at all times, the best systems can reduce the time from data input to decision by at least 30%. Another way the right sandbox can help you achieve operational efficiencies is by direct integration with your production environment. Pretty charts and graphs are great and can be very insightful, but the best sandbox goes beyond just business intelligence and should allow you to immediately put models into action. Scalability and Flexibility: In implementing any new software system, scalability and flexibility are key when it comes to integration into your native systems and the system’s capabilities. This is even more imperative when implementing an enterprise-wide tool like an analytical sandbox. Look for systems that offer a hosted, cloud-based environment, like Amazon Web Services, that ensures operational redundancy, as well as browser-based access and system availability.The right sandbox will leverage a scalable software framework for efficient processing. It should also be programming language agnostic, allowing for use of all industry-standard programming languages and analytics tools like SAS, R Studio, H2O, Python, Hue and Tableau. Moreover, you shouldn’t have to pay for software suites that your analytics teams aren’t going to use. Support: Whether you have an entire analytics department at your disposal or a lean, start-up style team, you’re going to want the highest level of support when it comes to onboarding, implementation and operational success. The best sandbox solution for your company will have a robust support model in place to ensure client success. Look for solutions that offer hands-on instruction, flexible online or in-person training and analytical support. Look for solutions and data partners that also offer the consultative help of industry experts when your company needs it. Data, Data and More Data: Any analytical environment is only as good as the data you put into it. It should, of course, include your own client data. However, relying exclusively on your own data can lead to incomplete analysis, missed opportunities and reduced impact. When choosing a sandbox solution, pick a system that will include the most local, regional and national credit data, in addition to alternative data and commercial data assets, on top of your own data.The optimum solutions will have years of full-file, archived tradeline data, along with attributes and models for the most robust results. Be sure your data partner has accounted for opt-outs, excludes data precluded by legal or regulatory restrictions and also anonymizes data files when linking your customer data. Data accuracy is also imperative here. Choose a big data partner who is constantly monitoring and correcting discrepancies in customer files across all bureaus. The best partners will have data accuracy rates at or above 99.9%. Solving the business problem around your big data can be a daunting task. However, investing in analytical environments or sandboxes can offer a solution. Finding the right solution and data partner are critical to your success. As you begin your search for the best sandbox for you, be sure to look for solutions that are the right combination of operational efficiency, flexibility and support all combined with the most robust national data, along with your own customer data. Are you interested in learning how companies are using sandboxes to make it easier, faster and more cost-effective to drive actionable insights from their data? Join us for this upcoming webinar. Register for the Webinar

Published: October 24, 2018 by Jesse Hoggard

How a business prices its products is a dynamic process that drives customer satisfaction and loyalty, as well as business success.  In the digital age, pricing is becoming even more complex.  For example, companies like Amazon may revise the price of a hot item several times per day. Dynamic pricing models for consumer financial products can be especially difficult for at least four reasons: A complex regulatory environment. Fair lending concerns. The potential for adverse selection by risky consumers and fraudsters. The direct impact the affordability of a loan may have on both the consumer’s ability to pay it and the likelihood that it will be prepaid. If a lender offered the same interest rate and terms to every customer for the same loan product, low-risk customers would secure better rates elsewhere, and high-risk customers would not. The end result? Only the higher-risk customers would select the product, which would increase losses and reduce profitability. For this reason, the lending industry has established risk-based pricing. This pricing method addresses the above issue, since customers with different risk profiles are offered different rates. But it’s limited. More advanced lenders also understand the price elasticity of customer demand, because there are diverse reasons why customers decide to take up differently priced loans. Customers have different needs and risk profiles, so they react to a loan offer in different ways. Many factors determine a customer’s propensity to take up an offer — for example, the competitive environment and availability of other lenders, how time-critical the decision is, and the loan terms offered. Understanding the customer’s price elasticity allows a business to offer the ideal price to each customer to maximize profitability. Pricing optimization is the superior method assuming the lender has a scientific, data-driven approach to predicting how different customers will respond to different prices. Optimization allows an organization to determine the best offer for each customer to meet business objectives while adhering to financial and operational constraints such as volume, margin and credit risk. The business can access trade-offs between competing objectives, such as maximizing revenue and maximizing volume, and determine the optimal decision to be made for each individual customer to best meet both objectives. In the table below, you can see five benefits lenders realize when they improve their pricing segmentation with an optimization strategy. Interested in learning more about pricing optimization? Click here to download our full white paper, Price optimization in retail consumer lending.

Published: October 11, 2018 by Shelly Miller

If your company is like many financial institutions, it’s likely the discussion around big data and financial analytics has been an ongoing conversation. For many financial institutions, data isn’t the problem, but rather what could or should be done with it. Research has shown that only about 30% of financial institutions are successfully leveraging their data to generate actionable insights, and customers are noticing. According to a recent study from Capgemini,  30% of US customers and 26% of UK customers feel like their financial institutions understand their needs. No matter how much data you have, it’s essentially just ones and zeroes if you’re not using it. So how do banks, credit unions, and other financial institutions who capture and consume vast amounts of data use that data to innovate, improve the customer experience and stay competitive? The answer, you could say, is written in the sand. The most forward-thinking financial institutions are turning to analytical environments, also known as a sandbox, to solve the business problem of big data. Like the name suggests, a sandbox is an environment that contains all the materials and tools one might need to create, build, and collaborate around their data. A sandbox gives data-savvy banks, credit unions and FinTechs access to depersonalized credit data from across the country. Using custom dashboards and data visualization tools, they can manipulate the data with predictive models for different micro and macro-level scenarios. The added value of a sandbox is that it becomes a one-stop shop data tool for the entire enterprise. This saves the time normally required in the back and forth of acquiring data for a specific to a project or particular data sets. The best systems utilize the latest open source technology in artificial intelligence and machine learning to deliver intelligence that can inform regional trends, consumer insights and highlight market opportunities. From industry benchmarking to market entry and expansion research and campaign performance to vintage analysis, reject inferencing and much more. An analytical sandbox gives you the data to create actionable analytics and insights across the enterprise right when you need it, not months later. The result is the ability to empower your customers to make financial decisions when, where and how they want. Keeping them happy keeps your financial institution relevant and competitive. Isn’t it time to put your data to work for you? Learn more about how Experian can solve your big data problems. >> Interested to see a live demo of the Ascend Sandbox? Register today for our webinar “Big Data Can Lead to Even Bigger ROI with the Ascend Sandbox.”

Published: October 4, 2018 by Jesse Hoggard

Big Data is no longer a new concept. Once thought to be an overhyped buzzword, it now underpins and drives billions in dollars of revenue across nearly every industry. But there are still companies who are not fully leveraging the value of their big data and that’s a big problem. In a recent study, Experian and Forrester surveyed nearly 600 business executives in charge of enterprise risk, analytics, customer data and fraud management. The results were surprising: while 78% of organizations said they have made recent investments in advanced analytics, like the proverbial strategic plan sitting in a binder on a shelf, only 29% felt they were successfully using these investments to combine data sources to gather more insights. Moreover, 40% of respondents said they still rely on instinct and subjectivity when making decisions. While gut feeling and industry experience should be a part of your decision-making process, without data and models to verify or challenge your assumptions, you’re taking a big risk with bigger operations budgets and revenue targets. Meanwhile, customer habits and demands are quickly evolving beyond a fundamental level. The proliferation of mobile and online environments are driving a paradigm shift to omnichannel banking in the financial sector and with it, an expectation for a customized but also digitized customer experience. Financial institutions have to be ready to respond to and anticipate these changes to not only gain new customers but also retain current customers. Moreover, you can bet that your competition is already thinking about how they can respond to this shift and better leverage their data and analytics for increased customer acquisition and engagement, share of wallet and overall reach. According to a recent Accenture study, 79% of enterprise executives agree that companies that fail to embrace big data will lose their competitive position and could face extinction. What are you doing to help solve the business problem around big data and stay competitive in your company?

Published: September 27, 2018 by Jesse Hoggard

With Hispanic Heritage Awareness Month underway and strategic planning season in full swing, the topic of growing membership continues to take front stage for credit unions. Miriam De Dios Woodward (CEO of Coopera Consulting) is an expert on the Hispanic opportunity, working with credit unions to help them grow by expanding the communities they serve. I asked Miriam if she could provide her considerations for credit unions looking to further differentiate their offerings and service levels in 2019 and beyond.   There’s never been a better time for credit unions to start (or grow) Hispanic engagement as a differentiation strategy. Lending deeper to this community is one key way to do just that. Financial institutions that don’t will find it increasingly difficult to grow their membership, deposits and loan balances. As you begin your 2019 strategic planning discussions, consider how your credit union could make serving the Hispanic market a differentiation strategy. Below are nine ways to start. 1.  Understand your current membership and market through segmentation and analytics. The first step in reaching Hispanics in your community is understanding who they are and what they need. Segment your existing membership and market to determine how many are Hispanic, as well as their language preferences. Use this segmentation to set a baseline for growth of your Hispanic growth strategy, measure ongoing progress and develop new marketing and product strategies. If you don’t have the bandwidth and resources to conduct this segmentation in-house, seek partners to help. 2.  Determine the product gaps that exist and where you can deepen relationships. After you understand your current Hispanic membership and market, you will want to identify opportunities to improve the member experience, including your lending program. For example, if you notice Hispanics are not obtaining mortgages at the same rate as non-Hispanics, look at ways to bridge the gaps and address the root causes (i.e., more first-time homebuyer education and more collaboration with culturally relevant providers across the homebuying experience). Also, consider how you might adapt personal loans to meet the needs of consumers, such as paying for immigration expenses or emergencies with family in Latin America. 3.  Explore alternative credit scoring models. Many credit products accessible to underserved consumers feature one-size-fits-all rates and fees, which means they aren’t priced according to risk. Just because a consumer is unscoreable by most traditional credit scoring models doesn’t mean he or she won’t be able to pay back a loan or does not have a payment history. Several alternative models available today can help  lenders better evaluate a consumer’s ability to repay. Alternative sources of consumer data, such as utility records, cell phone payments, medical payments, insurance payments, remittance receipts, direct deposit histories and more, can be used to build better risk models. Armed with this information – and with the proper programs in place to ensure compliance with regulatory requirements and privacy laws – credit unions can continue making responsible lending decisions and grow their portfolio while better serving the underserved. 4.  Consider how you can help more Hispanic members realize their desire to become homeowners. In 2017, more than 167,000 Hispanics purchased a first home, taking the total number of Hispanic homeowners to nearly 7.5 million (46.2 percent of Hispanic households). Hispanics are the only demographic to have increased their rate of homeownership for the last three consecutive years. What’s more, 9 percent of Hispanics are planning to buy a house in the next 12 months, compared to 6 percent of non-Hispanics. This means Hispanics, who represent about 18 percent of the U.S. population, may represent 22 percent of all new home buyers in the next year. By offering a variety of home loan options supported by culturally relevant education, credit unions can help more Hispanics realize the dream of homeownership.   5.  Go beyond indirect lending for auto loans. The number of cars purchased by Hispanics in the U.S. is projected to double in the period between 2010 and 2020. It’s estimated that new car sales to Hispanics will grow by 8 percent over the next five years, compared to a 2 percent decline among the total market. Consider connecting with local car dealers that serve the Hispanic market. Build a pre-car buying relationship with members rather than waiting until after they’ve made their decision. Connect with them after they’ve made the purchase, as well.   6.  Consider how you can help Hispanic entrepreneurs and small business owners. Hispanics are nine times more likely than whites to take out a small business loan in the next five years. Invest in products and resources to help Hispanic entrepreneurs, such as small business-friendly loans, microloans, Individual Taxpayer Identification Number (ITIN) loans, credit-building loans and small-business financial education. Also, consider partnering with organizations that offer small business assistance, such as local Hispanic chambers of commerce and small business incubators.   7.  Rethink your credit card offerings. Credit card spending among underserved consumers has grown rapidly for several consecutive years. The Center for Financial Services Innovation (CFSI) estimates underserved consumers will spend $37.6 billion on retail credit cards, $8.3 billion on subprime credit cards and $0.4 billion on secured credit cards in 2018. Consider mapping out a strategy to evolve your credit card offerings in a way most likely to benefit the unique underserved populations in your market. Finding success with a credit-builder product like a secured card isn’t a quick fix. Issuers must take the necessary steps to comply with several regulations, including Ability to Repay rules. Cards and marketing teams will need to collaborate closely to execute sales, communication and, importantly, cardmember education plans. There must also be a good program in place for graduating cardmembers into appropriate products as their improving credit profiles warrant. If offering rewards-based products, ensure the rewards include culturally relevant offerings. Work with your credit card providers.­   8.  Don’t forget about lines of credit. Traditional credit lines are often overlooked as product offerings for Hispanic consumers. These products can provide flexible funding opportunities for a variety of uses such as making home improvements, helping family abroad with emergencies, preparing families for kids entering college and other expenses. Members who are homeowners and have equity in their homes have a potential untapped source to borrow cash.   9.  Get innovative. Hispanic consumers are twice as likely to research financial products and services using mobile apps. Many fintech companies have developed apps to help Hispanics meet immediate financial needs, such as paying off debt and saving for short-term goals. Others encourage long-term financial planning. Still other startups have developed new plans that are basically mini-loans shoppers can take out for specific purchases when checking out at stores and online sites that participate. Consider how your credit union might partner with innovative fintech companies like these to offer relevant, digital financial services to Hispanics in your community.   Next Steps Although there’s more to a robust Hispanic outreach program than we can fit in one article, credit unions that bring the nine topics highlighted above to their 2019 strategic planning sessions will be in an outstanding position to differentiate themselves through Hispanic engagement.   Experian is proud to be the only credit bureau with a team 100% dedicated to the Credit Union movement and sharing industry best practices from experts like Miriam De Dios Woodward. Our continued focus is providing solutions that enable credit unions to continue to grow, protect and serve their field of membership. We can provide a more complete view of members and potential members credit behavior with alternative credit data. By pulling in new data sources that include alternative financing, utility and rental payments, Experian provides credit unions a more holistic picture, helping to improve credit access and decisioning for millions of consumers who may otherwise be overlooked.   About Miriam De Dios Woodward Miriam De Dios Woodward is the CEO of Coopera, a strategy consulting firm that helps credit unions and other organizations reach and serve the Hispanic market as an opportunity for growth and financial inclusion. She was named a 2016 Woman to Watch by Credit Union Times and 2015 Latino Business Person of the Year by the League of United Latin American Citizens of Iowa. Miriam earned her bachelor’s degree from Iowa State University, her MBA from the University of Iowa and is a graduate of Harvard Business School’s Leading Change and Organizational Renewal executive program.

Published: September 20, 2018 by Guest Contributor

Machine learning (ML), the newest buzzword, has swept into the lexicon and captured the interest of us all. Its recent, widespread popularity has stemmed mainly from the consumer perspective. Whether it’s virtual assistants, self-driving cars or romantic matchmaking, ML has rapidly positioned itself into the mainstream. Though ML may appear to be a new technology, its use in commercial applications has been around for some time. In fact, many of the data scientists and statisticians at Experian are considered pioneers in the field of ML, going back decades. Our team has developed numerous products and processes leveraging ML, from our world-class consumer fraud and ID protection to producing credit data products like our Trended 3DTM attributes. In fact, we were just highlighted in the Wall Street Journal for how we’re using machine learning to improve our internal IT performance. ML’s ability to consume vast amounts of data to uncover patterns and deliver results that are not humanly possible otherwise is what makes it unique and applicable to so many fields. This predictive power has now sparked interest in the credit risk industry. Unlike fraud detection, where ML is well-established and used extensively, credit risk modeling has until recently taken a cautionary approach to adopting newer ML algorithms. Because of regulatory scrutiny and perceived lack of transparency, ML hasn’t experienced the broad acceptance as some of credit risk modeling’s more utilized applications. When it comes to credit risk models, delivering the most predictive score is not the only consideration for a model’s viability. Modelers must be able to explain and detail the model’s logic, or its “thought process,” for calculating the final score. This means taking steps to ensure the model’s compliance with the Equal Credit Opportunity Act, which forbids discriminatory lending practices. Federal laws also require adverse action responses to be sent by the lender if a consumer’s credit application has been declined. This requires the model must be able to highlight the top reasons for a less than optimal score. And so, while ML may be able to deliver the best predictive accuracy, its ability to explain how the results are generated has always been a concern. ML has been stigmatized as a “black box,” where data mysteriously gets transformed into the final predictions without a clear explanation of how. However, this is changing. Depending on the ML algorithm applied to credit risk modeling, we’ve found risk models can offer the same transparency as more traditional methods such as logistic regression. For example, gradient boosting machines (GBMs) are designed as a predictive model built from a sequence of several decision tree submodels. The very nature of GBMs’ decision tree design allows statisticians to explain the logic behind the model’s predictive behavior. We believe model governance teams and regulators in the United States may become comfortable with this approach more quickly than with deep learning or neural network algorithms. Since GBMs are represented as sets of decision trees that can be explained, while neural networks are represented as long sets of cryptic numbers that are much harder to document, manage and understand. In future blog posts, we’ll discuss the GBM algorithm in more detail and how we’re using its predictability and transparency to maximize credit risk decisioning for our clients.

Published: September 12, 2018 by Alan Ikemura

Consumer confidence is nearing an 18-year high. Unemployment figures are at record lows. Retail spend is healthy, and expected to stay that way through the back-to-school and holiday shopping booms. Translation for credit card issuers? The swiping and spending continue. In fact, credit card openings were up 4% in the first quarter of 2018 compared to the same time last year, and card utilization is hovering around 20.5%. Even with the Fed’s gradual 2018 rate hikes, consumers are shopping. In a new Mintel report, outstanding credit card debt is now $1.03 trillion (as of the end of Q1, 2018), and the number of consumers with credit cards is growing fastest among people aged 18 to 34. In the retail card arena specifically, boomers and Gen X’ers are leading the charge, opening 45% and 27% of new retails cards, respectively. “A stronger economy always bodes well for credit cards,” said Kelley Motley, director of analytics for Experian. “Now is the time for card issuers to zero in on their most loyal consumers and ensure they are treating them with the right offers, rewards and premium benefits.” Consumer data reveals the top incentives when selecting a rewards-based card includes cash back, gas rewards and retail cards (including travel rewards and airfare). In fact, for younger consumers, offering rewards has proven to be the most effective way to get them to switch from debit to credit cards. Cash back was the most preferred reward for consumers aged 18 to 44 when asked about their motivation to apply for a new card. For individuals 45 and older, 0% interest was the top motivator. Of course, beyond credit card opens, the ideal is to engage with the consumers who are utilizing the card the most. From a segmentation standpoint, the loyal retail cardholder has an average VantageScore® credit score of 671 with an average total balance of $1,633. They use the card regularly and consistently make payments. Finding more loyalists is the goal and can be achieved with informed segmentation insights and targeted prescreen campaigns. On the flip side, insights can inform card issuers with data, helping them to avoid wasting marketing dollars on consumers who merely want to game a quick credit card offer and then close an account. A batch and blast marketing approach no longer works in the credit card marketing game. “Consumers expect you to know them and their financial needs,” said Paul DeSaulniers, senior director of Experian’s segmentation solutions. “The data exists and tells you exactly who to target and how to structure the offer – you just need to execute.”

Published: August 6, 2018 by Kerry Rivera

Subscribe to our blog

Enter your name and email for the latest updates.

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Subscribe to our Experian Insights blog

Don't miss out on the latest industry trends and insights!
Subscribe