Meat and potatoes Data are the meat and potatoes of fraud detection. You can have the brightest and most capable statistical modeling team in the world. But if they have crappy data, they will build crappy models. Fraud prevention models, predictive scores, and decisioning strategies in general are only as good as the data upon which they are built. How do you measure data performance? If a key part of my fraud risk strategy deals with the ability to match a name with an address, for example, then I am going to be interested in overall coverage and match rate statistics. I will want to know basic metrics like how many records I have in my database with name and address populated. And how many addresses do I typically have for consumers? Just one, or many? I will want to know how often, on average, we are able to match a name with an address. It doesn’t do much good to tell you your name and address don’t match when, in reality, they do. With any fraud product, I will definitely want to know how often we can locate the consumer in the first place. If you send me a name, address, and social security number, what is the likelihood that I will be able to find that particular consumer in my database? This process of finding a consumer based on certain input data (such as name and address) is called pinning. If you have incomplete or stale data, your pin rate will undoubtedly suffer. And my fraud tool isn’t much good if I don’t recognize many of the people you are sending me. Data need to be fresh. Old and out-of-date information will hurt your strategies, often punishing good consumers. Let’s say I moved one year ago, but your address data are two-years old, what are the chances that you are going to be able to match my name and address? Stale data are yucky. Quality Data = WIN It is all too easy to focus on the more sexy aspects of fraud detection (such as predictive scoring, out of wallet questions, red flag rules, etc.) while ignoring the foundation upon which all of these strategies are built.
The definition of account management authentication is: Keep your customers happy, but don’t lose sight of fraud risks and effective tools to combat those risks. In my previous posting, I discussed some unique fraud risks facing institutions during the account management phase of their customer lifecycles. As a follow up, I want to review a couple of effective tools that allow you to efficiently minimize fraud losses during post-application: Knowledge Based Authentication (KBA) — this process involves the use of challenge/response questions beyond "secret" or "traditional" internally derived questions (such as mother's maiden name or last transaction amount). This tool allows for measurably effective use of questions based on more broad-reaching data (credit and noncredit) and consistent delivery of those questions without subjective question creation and grading by call center agents. KBA questions sourced from information not easily accessible by call center agents or fraudsters provide an additional layer of security that is more impenetrable by social engineering. From a process efficiency standpoint, the use of automated KBA also can reduce online sessions for consumers, and call times as agents spend less time self-selecting questions, self-grading responses and subjectively determining next steps. Delivery of KBA questions via consumer-facing online platforms or via interactive voice response (IVR) systems can further reduce operational costs since the entire KBA process can be accommodated without call center agent involvement. Negative file and fraud database – performing checks against known fraudulent and abuse records affords institutions an opportunity to, in batch or real time, check elements such as address, phone, and SSN for prior fraudulent use or victimization. These checks are a critical element in supplementing traditional consumer authentication processes, particularly in an account management procedure in which consumer and/or account information may have been compromised. Transaction requests such as address or phone changes to an account are particularly low-hanging fruit as far as running negative file checks are concerned.
--by Andrew Gulledge Intelligent use of features Question ordering: You want some degree of randomization in the questions that are included for each session. If a fraudster (posing as you) comes through Knowledge Based Authentication, for two or three sessions, wouldn’t you want them to answer new questions each time? At the same time, you want to try to use those questions that perform better more often. One way to achieve both is to group the questions into categories, and use a fixed category ordering (with the better-performing categories being higher up in the batting line up)—then, within each category, the question selection is randomized. This way, you can generally use the better questions more, but at the same time, make it difficult to come through Knowledge Based Authentication twice and get the same questions presented back to you. (You can also force all new questions in subsequent sessions, with a question exclusion strategy, but this can be restrictive and make the “failure to generate questions” rate spike.) Question weighting: Since we know some questions outperform others, both in terms of percentage correct and in terms of fraud separation, it is generally a good idea to weight the questions with points based on these performance metrics. Weighting can help to squeeze out some additional fraud detection from your Knowledge Based Authentication tool. It also provides considerable flexibility in your decisioning (since it is no longer just “how many questions were answered correctly” but it is “what percentage of points were obtained”). Usage Limits: You should only allow a consumer to come through the Knowledge Based Authentication process a certain number of times before getting an auto-fail decision. This can take the form of x number of uses allowable within y number of hours/days/etc. Time out Limit: You should not allow fraudsters to research the questions in the middle of a Knowledge Based Authentication session. The real consumer should know the answers off the top of their heads. In a web environment, five minutes should be plenty of time to answer three to five questions. A call center environment should allow for more time since some people can be a bit chatty on the phone.
--by Andrew Gulledge General configuration issues Question selection- In addition to choosing questions that generally have a high percentage correct and fraud separation, consider any questions that would clearly not be a fit to your consumer population. Don’t get too trigger-happy, however, or you’ll have a spike in your “failure to generate questions” rate. Number of questions- Many people use three or four out-of-wallet questions in a Knowledge Based Authentication session, but some use more or less than that, based on their business needs. In general, more questions will provide a stricter authentication session, but might detract from the customer experience. They may also create longer handling times in a call center environment. Furthermore, it is harder to generate a lot of questions for some consumers, including thin-file types. Fewer Knowledge Based Authentication questions can be less invasive for the consumer, but limits the fraud detection value of the KBA process. Multiple choice- One advantage of this answer format is that it relies on recognition memory rather than recall memory, which is easier for the consumer. Another advantage is that it generally prevents complications associated with minor numerical errors, typos, date formatting errors and text scrubbing requirements. A disadvantage of multiple-choice, however, is that it can make educated guessing (and potentially gaming) easier for fraudsters. Fill in the blank- This is a good fit for some KBA questions, but less so with others. A simple numeric answer works well with fill in the blank (some small variance can be allowed where appropriate), but longer text strings can present complications. While undoubtedly difficult for a fraudster to guess, for example, most consumers would not know the full, official and (correct spelling) of the name to which they pay their monthly auto payment. Numeric fill in the blank questions are also good candidates for KBA in an IVR environment, where consumers can use their phone’s keypad to enter the answers.
--by Andrew Gulledge Where does Knowledge Based Authentication fit into my decisioning strategy? Knowledge Based Authentication can fit into various parts of your authentication process. Some folks choose to put every consumer through KBA, while others only send their riskier transactions through the out-of-wallet questions. Some people use Knowledge Based Authentication to feed a manual review process, while others use a KBA failure as a hard-decline. Uses for KBA are as sundry and varied as the questions themselves. Decision Matrix- As discussed by prior bloggers, a well-engineered fraud score can provide considerable lift to any fraud risk strategy. When possible, it is a good idea to combine both score and questions into the decisioning process. This can be done with a matrixed approach—where you are more lenient on the questions if the applicant has a good fraud score, and more lenient on the score if the applicant did well on the questions. In a decision matrix, a set decision code is placed within various cells, based on fraud risk. Decision Overrides- These provide a nice complement to your standard fraud decisioning strategy. Different fraud solution vendors provide different indicators or flags with which decisioning rules can be created. For example, you might decide to fail a consumer who provides a social security number that is recorded as deceased. These rules can help to provide additional lift to the standard decisioning strategy, whether it is in addition to Knowledge Based Authentication questions alone, questions and score, etc. The overrides can be along the lines of both auto-pass and auto-fail.
--by Andrew Gulledge Definition and examples Knowledge Based Authentication (KBA) is when you ask a consumer questions to which only they should know the answer. It is designed to prevent identity theft and other kinds of third-party fraud. Examples of Knowledge Based Authentication (also known as out-of-wallet) questions include “What is your monthly car payment?:" or “What are the last four digits of your cell number?” KBA -- and associated fraud analytics -- are an important part of your fraud best practices strategies. What makes a good KBA question? High percentage correct A good Knowledge Based Authentication question will be easy to answer for the real consumer. Thus we tend to shy away from questions for which a high percentage of consumers give the wrong answer. Using too many of these questions will contribute to false positives in your authentication process (i.e., failing a good consumer). False positives can be costly to a business, either by losing a good customer outright or by overloading your manual review queue (putting pressure on call centers, mailers, etc.). High fraud separation It is appropriate to make an exception, however, if a question with a low percentage correct tends to show good fraud detection. (After all, most people use a handful of KBA questions during an authentication session, so you can leave a little room for error.) Look at the fraudsters who successfully get through your authentication process and see which questions they got right and which they got wrong. The Knowledge Based Authentication questions that are your best fraud detectors will have a lower percentage correct in your fraud population, compared to the overall population. This difference is called fraud separation, and is a measure of the question’s capacity to catch the bad guys. High question generability A good Knowledge Based Authentication question will also be generable for a high percentage of consumers. It’s admirable to beat your chest and say your KBA tool offers 150 different questions. But it’s a much better idea to generate a full (and diverse) question set for over 99 percent of your consumers. Some KBA vendors tout a high number of questions, but some of these can only be generated for one or two percent of the population (if that). And, while it’s nice to be able to ask for a consumer’s SCUBA certification number, this kind of question is not likely to have much effect on your overall production.
Round 1 – Pick your corner There seems to be two viewpoints in the market today about Knowledge Based Authentication (KBA): one positive, one negative. Depending on the corner you choose, you probably view it as either a tool to help reduce identity theft and minimize fraud losses, or a deficiency in the management of risk and the root of all evil. The opinions on both sides are pretty strong, and biases “for” and “against” run pretty deep. One of the biggest challenges in discussing Knowledge Based Authentication as part of an organization’s identity theft prevention program, is the perpetual confusion between dynamic out-of-wallet questions and static “secret” questions. At this point, most people in the industry agree that static secret questions offer little consumer protection. Answers are easily guessed, or easily researched, and if the questions are preference based (like “what is your favorite book?”) there is a good chance the consumer will fail the authentication session because they forgot the answers or the answers changed over time. Dynamic Knowledge Based Authentication, on the other hand, presents questions that were not selected by the consumer. Questions are generated from information known about the consumer – concerning things the true consumer would know and a fraudster most likely wouldn’t know. The questions posed during Knowledge Based Authentication sessions aren’t designed to “trick” anyone but a fraudster, though a best in class product should offer a number of features and options. These may allow for flexible configuration of the product and deployment at multiple points of the consumer life cycle without impacting the consumer experience. The two are as different as night and day. Do those who consider “secret questions” as Knowledge Based Authentication consider the password portion of the user name and password process as KBA, as well? If you want to hold to strict logic and definition, one could argue that a password meets the definition for Knowledge Based Authentication, but common sense and practical use cause us to differentiate it, which is exactly what we should do with secret questions – differentiate them from true KBA. KBA can provide strong authentication or be a part of a multifactor authentication environment without a negative impact on the consumer experience. So, for the record, when we say KBA we mean dynamic, out of wallet questions, the kind that are generated “on the fly” and delivered to a consumer via “pop quiz” in a real-time environment; and we think this kind of KBA does work. As part of a risk management strategy, KBA has a place within the authentication framework as a component of risk- based authentication… and risk-based authentication is what it is really all about.