Loading...

There is more to fraud than just identity theft

Published: August 30, 2009 by Guest Contributor

By: Ken Pruett

I find it interesting that the media still focuses all of their attention on identity theft when it comes to credit-related fraud.  Don’t get me wrong.  This is still a serious problem and is certainly not going away any time soon.  But, there are other types of financial fraud that are costing all of us money, indirectly, in the long run.  I thought it would be worth mentioning some of these today.

Although third party fraud, (which involves someone victimizing a consumer), gets most of the attention, first party fraud (perpetrated by the actual consumer) can be even more costly.  “Never pay” and “bust out” are two fraud scenarios that seem to be on the rise and warrant attention when developing a fraud prevention program.

Never Pay
A growing fraud problem that occurs during the acquisition stage of the customer life cycle is “never pay”.  This is also classified as first payment default fraud.  Another term we often hear to describe this type of perpetrator is “straight roller”.

This type of fraudster is best described as someone who signs up for a product or service — and never makes a payment.

This fraud problem occurs when a consumer makes an application for a loan or credit card. The consumer provides true identification information but changes one or two elements (such as the address or social security number).  He does this so that he can claim later that he did not apply for the credit.  When he’s granted credit, he often makes purchases close to the limit provided on the account.  (Why get the 32 inch flat screen TV when the 60 inch is on the next store shelf — when you know you are not going to pay for it anyway?)

These fraudsters never make any payments at all on these accounts. The accounts usually end up in collections.

Because standard credit risk scores look at long term credit, they often are not effective in predicting this type of fraud.  The best approach is to use a fraud model specifically targeted for this issue.

Bust Out Fraud
Of all the fraud scenarios, bust out fraud is one of the most talked about topics when we meet with credit card companies.  This type of fraud occurs during the account management phase of the customer lifecycle.  It is characterized by a person obtaining credit, typically a loan or credit card, and maintaining a good credit history with the account holder for a reasonable period of time.  Just prior to the bust out point, the fraudster will pay off the majority of the balance, often by using a bad check.  She will then run the card up close to the limit again — and then disappear.

Losses for this type of fraud are higher than average credit card losses.  Losses between 150 to 200 percent of the credit limit are typical.  We’ve seen this pattern at numerous credit card institutions across many of their accounts.

This is a very difficult type of fraud to prevent. At the time of application, the customer typically looks good from a credit and fraud standpoint.  Many companies have some account management tools in place to help prevent this type of fraud, but their systems only have a view into the one account tied to the customer.  A best practice for preventing this type of fraud is to use tools that look at all the accounts tied to the consumer — along with other metrics such as recent inquiries.  When taking all of these factors into consideration, one can better predict this growing fraud type.

Related Posts

Fake IDs have been around for decades, but today’s fraudsters aren’t just printing counterfeit driver’s licenses — they’re using artificial intelligence (AI) to create synthetic identities. These AI fake IDs bypass traditional security checks, making it harder for businesses to distinguish real customers from fraudsters. To stay ahead, organizations need to rethink their fraud prevention solutions and invest in advanced tools to stop bad actors before they gain access. The growing threat of AI Fake IDs   AI-generated IDs aren’t just a problem for bars and nightclubs; they’re a serious risk across industries. Fraudsters use AI to generate high-quality fake government-issued IDs, complete with real-looking holograms and barcodes. These fake IDs can be used to commit financial fraud, apply for loans or even launder money. Emerging services like OnlyFake are making AI-generated fake IDs accessible. For $15, users can generate realistic government-issued IDs that can bypass identity verification checks, including Know Your Customer (KYC) processes on major cryptocurrency exchanges.1 Who’s at risk? AI-driven identity fraud is a growing problem for: Financial services – Fraudsters use AI-generated IDs to open bank accounts, apply for loans and commit credit card fraud. Without strong identity verification and fraud detection, banks may unknowingly approve fraudulent applications. E-commerce and retail – Fake accounts enable fraudsters to make unauthorized purchases, exploit return policies and commit chargeback fraud. Businesses relying on outdated identity verification methods are especially vulnerable. Healthcare and insurance – Fraudsters use fake identities to access medical services, prescription drugs or insurance benefits, creating both financial and compliance risks. The rise of synthetic ID fraud Fraudsters don’t just stop at creating fake IDs — they take it a step further by combining real and fake information to create entirely new identities. This is known as synthetic ID fraud, a rapidly growing threat in the digital economy. Unlike traditional identity theft, where a criminal steals an existing person’s information, synthetic identity fraud involves fabricating an identity that has no real-world counterpart. This makes detection more difficult, as there’s no individual to report fraudulent activity. Without strong synthetic fraud detection measures in place, businesses may unknowingly approve loans, credit cards or accounts for these fake identities. The deepfake threat AI-powered fraud isn’t limited to generating fake physical IDs. Fraudsters are also using deepfake technology to impersonate real people. With advanced AI, they can create hyper-realistic photos, videos and voice recordings to bypass facial recognition and biometric verification. For businesses relying on ID document scans and video verification, this can be a serious problem. Fraudsters can: Use AI-generated faces to create entirely fake identities that appear legitimate Manipulate real customer videos to pass live identity checks Clone voices to trick call centers and voice authentication systems As deepfake technology improves, businesses need fraud prevention solutions that go beyond traditional ID verification. AI-powered synthetic fraud detection can analyze biometric inconsistencies, detect signs of image manipulation and flag suspicious behavior. How businesses can combat AI fake ID fraud Stopping AI-powered fraud requires more than just traditional ID checks. Businesses need to upgrade their fraud defenses with identity solutions that use multidimensional data, advanced analytics and machine learning to verify identities in real time. Here’s how: Leverage AI-powered fraud detection – The same AI capabilities that fraudsters use can also be used against them. Identity verification systems powered by machine learning can detect anomalies in ID documents, biometrics and user behavior. Implement robust KYC solutions – KYC protocols help businesses verify customer identities more accurately. Enhanced KYC solutions use multi-layered authentication methods to detect fraudulent applications before they’re approved. Adopt real-time fraud prevention solutions – Businesses should invest in fraud prevention solutions that analyze transaction patterns and device intelligence to flag suspicious activity. Strengthen synthetic identity fraud detection – Detecting synthetic identities requires a combination of behavioral analytics, document verification and cross-industry data matching. Advanced synthetic fraud detection tools can help businesses identify and block synthetic identities. Stay ahead of AI fraudsters AI-generated fake IDs and synthetic identities are evolving, but businesses don’t have to be caught off guard. By investing in identity solutions that leverage AI-driven fraud detection, businesses can protect themselves from costly fraud schemes while ensuring a seamless experience for legitimate customers. At Experian, we combine cutting-edge fraud prevention, KYC and authentication solutions to help businesses detect and prevent AI-generated fake ID and synthetic ID fraud before they cause damage. Our advanced analytics, machine learning models and real-time data insights provide the intelligence businesses need to outsmart fraudsters. Learn more *This article includes content created by an AI language model and is intended to provide general information. 1 https://www.404media.co/inside-the-underground-site-where-ai-neural-networks-churns-out-fake-ids-onlyfake/

Published: March 20, 2025 by Julie Lee

Financial institutions can help protect clients by educating them on the warning signs of fraudulent lottery scams.

Published: March 12, 2025 by Alex Lvoff

Discover how data analytics in utilities helps energy providers navigate regulatory, economic, and operational challenges. Learn how utility analytics and advanced analytics solutions from Experian can optimize operations and enhance customer engagement.

Published: March 10, 2025 by Stefani Wendel